

API Documentation

i Beam

Version 1.0

01.07.2022

 i Beam 1 Content 2

1 Content

1 Content ... 2

2 General Information ... 3

2.1 UDP/IP via LAN ... 3

2.2 Testing ... 3

2.3 Communication via UDP/IP .. 3

2.4 BasicHeader ... 4

2.5 DeviceData request ... 5

2.6 PresetRecall command ... 6

2.7 Acknowledgement message .. 7

2.8 Wait message ... 7

2.9 Error message .. 8

3 Example ... 9

3.1 Recall the 3
rd

 preset .. 9

 i Beam 2 General Information 3

Core Module Line Array (CMLA)
Control Protocol
This document describes how to remote control the CMLA device with external media
control units (MCU) like e.g. Crestron®.

2 General Information

This document refers to Line Array devices based on the Four Audio Core Module. It is based on

Firmware Version 0.3.0.6, but the fundamental commands in the protocol rarely change.

2.1 UDP/IP via LAN

CMLA can be addressed via UDP Port 5001. Reply messages from CMLA to your controller will be

sent back to the same port the controller used for sending.

The IP address can be configured either in the Four Audio System Software (Device/Network Set-

tings in the device menu) or any vendor specific software derived from it. There are two modes of

IP configuration for the device:

 DHCP (the default) will try to obtain an IP from a local DHCP server, such as a standard IP

router. If this fails, it will fall back to a Link Local IP address in the range 169.254.0.0/16,

following the specification of RFC5735 (https://tools.ietf.org/html/rfc5735).

 Static IP will assign a fixed IP address to the device. When choosing this option, please ensure

that the subnet is correctly chosen and that there are no address conflicts in the network.

Otherwise, the device may become unreachable via LAN.

2.2 Testing

You may test the communication with your CMLA device using your PC and a software like Packet

sender for UDP/IP http://packetsender.com/ , or using a scripting language like python (see .

2.3 Communication via UDP/IP

This section explains the CMLA network control protocol in some detail. If you just need to know

how to trigger a Preset Recall via network, you may skip right to the examples section (page 6).

All network communication between the CMLA and the rest of the world is done with messages in

the form of binary UDP packets. Each message consists of a 12 byte BasicHeader, followed by

command specific information.

All numbers are sent in Little Endian byte order, i.e. the least significant bit (LSB) comes first.

For example, the value 770 – or hexadecimal 0x0302 - is sent as 02 03.

https://tools.ietf.org/html/rfc5735
http://packetsender.com/

 i Beam 2 General Information 4

2.4 BasicHeader

Each message needs to be preceded by a header in the following format:

Byte # 1 2 3 4 5 6 7 8 9 10 11 12

Meaning Message

Type
Protocolld,

always

0x01

Status Device

UniqueId
Message

Sequence

Number

ComponentId Reserved

(leave 0)

MessageType (1 byte)

This is the most important byte as it shows what the message is all about. The following values are

interesting for media control devices:

Value (hex) Description

0x00 Ping, can be used to check if the device is still answering. A Ping consists just

of the BasicHeader and is not followed by any more data.

0x02 DeviceData, used to query general information, such as device name or static

IP address.

0x04 PresetRecall, either recalls a preset on device, or queries which preset is cur-

rently active.

Status (2 bytes)

These two bytes determine the basic communication role of the message. The following values

may be relevant for basic media control programming. Please remember that byte order is little

endian, so 0x0002 is sent as “02 00”. Any message with an unknown Status must be ignored.

Value (hex) Description

0x0002 Command, used for commands that actually change something on the device.

0x0006 Request, queries some parameters from the device.

0x0001 Response, sent from the device as reply to a command or request.

0x0009 Error, sent from the device if something has gone wrong.

0x0041 Wait, tells the receiver that the requested procedure is initialized but may take

some time.

 i Beam 2 General Information 5

DeviceUniqueId (4 bytes)

Is an identifier that will be filled by your CMLA device, allowing you to uniquely identify the de-

vice, e.g. to guarantee that you are talking to the right device in a DHCP setting, where the IP may

change. In messages being sent to the device, it can remain 0.

MessageSequenceNumber (2 bytes)

This is an identifier for your message. The CMLA will always reply to the message referring to it

with the same sequence number. You may start with an arbitrary number here, but it is crucial to

use a different number for each new message. Otherwise, errors will result when trying to send

commands in quick succession, as the network failure recovery mechanisms will get confused.

ComponentId (1 byte)

This byte is used to address a specific component in multi-component devices, i.e. stacked devices

that use more than one FA Core Module.

Value (hex) Description

0x00-0xFD Address specific DSP components in the device directly, normally counted

from bottom to top. This normally isn’t required when performing standard

tasks of a media control device.

0xFE No Forward. Address only the component that is connected to the network.

This is useful for requesting information from the device.

0xFF Broadcast. Send the command to all components in the stack.

This is e.g. useful for switching presets.

2.5 DeviceData request

A DeviceData query follows a BasicHeader with a MessageType of 0x02 (=DeviceData) and a Status

of 0x0006 (=request). In order to request the standard DeviceData structure described below, just

fill the DeviceData command with 4 zero bytes:

Byte # 13 14 15 16

Meaning CrtFlags (leave 0) OptFlags (leave 0) Reserved (leave 0) Reserved

(leave 0)

 i Beam 2 General Information 6

As an answer, you will receive the BasicHeader acknowledgement, followed by the following struc-

ture:

Byte # Meaning

13 CrtFlags (must be 0x00)

14 OptFlags (ignore these)

15..16 Device type id (0x0111 for CMLA)

17 Subnet Prefix length (in case of static IP)

18 Self diagnostic state (a value other than 0 indicates some problem)

19..22 Firmware Version

23..24 Serial no.

25..28 Reserved

29..32 Gateway IP

33..36 Static IP (set to 0 when DHCP is active)

37..40 Hardware Features (bitfield)

41 Start preset Id (note that this refers to the preset Id, not position!)

42..47 Reserved

48..79 Device Name (Latin-1 encoded)

80 Vendor ID

81..82 Reserved

2.6 PresetRecall command

A preset recall command follows a BasicHeader with a MessageType of 0x04 (=PresetRecall) and

a Status of 0x0002 (=command). The message consists of 4 bytes, structured as follows:

Byte # 13 14 15 16 17 18

Meaning CrtFlags OptFlags

(leave 0)

Index/

Position

Reserved

(leave 0)

Preset Bank

(leave 0)

Reserved

(leave 0)

 i Beam 2 General Information 7

CrtFlags (1 byte)

The CrtFlags are used to chose variants of the command. If these flags aren't understood by the

device, the command will be rejected. The following values are of general use:

Index/Position (1 byte)

Specifies the preset to be recalled. The method of addressing the preset is determined by the

value of CrtFlags. Note that Position is zero-based, i.e. the first preset has Position 0, the second

Position 1, and so on.

2.7 Acknowledgement message

An acknowledgement is sent by the CMLA whenever a command has been successfully executed.

It consists of the BasicHeader with the MessageType and MessageSequenceNumber of the corre-

sponding command, and Status set to 0x0001.

2.8 Wait message

A wait message is sent by the device to acknowledge that it has received a command, but pro-

cessing may take more than 500 ms. The message may be ignored by the receiver, displayed to the

user, or used to extend a resend timeout.

The message consists of a BasicHeader with the MessageType and MessageSequenceNumber of

the corresponding command, and Status set to 0x0041. After the header, the expected maximum

time to wait is indicated by the following structure:

Byte # 13 14 15 16

Meaning CrtFlags

(should be 0)

OptFlags

(ignore these)

TimeToWait (in 1/100s)

Value (hex) Description

0x00 Recall by Preset Index. The number given in byte 15 is the internal index of the

Preset. The index of a preset may be obtained by requesting the preset list

beforehand (this requires a block transfer and is not described in this docu-

ment).

0x02 Recall by Preset Position. The number given in byte 15 is simply the position of

the Preset in the device preset list. Recommended for use in media control

devices.

0x04 Return to Encoder Settings. Ignores the Index/Position given in the packet and

resets the device to the setting of the hardware encoder.

 i Beam 2 General Information 8

2.9 Error message

If for some reason the device is not able to comply to a message sent to it, it will answer with an

error message. The error message consists of a BasicHeader with the Status field set to 0x0009;

the fields MessageType and MessageSequenceNumber correspond to those of the message the

error refers to. After the BasicHeader, the following structure informs you about details of the

error:

Byte # 13 14 15 16

Meaning ErrorCode Reserved Reserved

The ErrorCode takes on one of the following values:

Value (hex) Description

0x0001 Bad Request. The message sent to it is not understood by the device.

0x0002 Unknown Resource. E.g. trying to recall a preset that doesn't exist.

0x0003 Busy. E.g. trying to access the device from two controls at once.

0x0004 Out of Resource. E.g. trying to upload a new preset to a device that has no free

preset slots left.

0x0005 Internal. This code should not occur in normal operation. If it happens repeat-

edly, it hints at an inconsistent device state.

0x0006 Inconsistent Bootloader. Should not occur in normal operation.

0x0007 Sync Lost. Should not occur in normal operation with an MCU.

 i Beam 3 Example 9

3 Example
Here’s a simple examples for switching presets on the device. If that is all you’re interested in,

then you may just copy the packets from this example and modify only the marked fields.

3.1 Recall the 3rd preset

Preset positions are zero-based, so recalling the 3rd preset means Position = 02.

To achieve this, simply send the following packet to the device via UDP port 5001.

The fields that may vary for your purpose are highlighted in the table.

Byte # 1 2 3 4 5 6 7 8 9 10 11 12

Value

(hex)

04 01 02 00 00 00 00 00 ee 01 ff 00

Expla-

nation

Message

Type:

Preset

Recall

X Status:

Command

DeviceUniqueId:

leave empty

Message

Sequence

Number:

Change

for each

command!

ComponentId:

Broadcast

to all compo-

nents

in the stack

Byte # 13 14 15 16 17 18

Value

(hex)

02 00 02 00 00 00

Expla-

nation

CrtFlags: Recall

by Position

OptFlags Position: 2 Reserved Reserved Reserved

The CrtFlags are set to 0x02, indicating that we want to recall a specific preset addressed by its position in

the preset list at byte #15. If instead we want to reset the device to the setting of a built-in hardware encod-

er, CrtFlags should be set to 0x04. In this case, byte #15 would be ignored.

 i Beam 3 Example 10

Now, you should expect something like the following response from the device,

sent to the UDP port from which you sent the command and from device port 5001:

Byte # 1 2 3 4 5 6 7 8 9 10 11 12

Value (hex) 04 01 01 00 6a 00 02 00 ee 01 00 00

Explanation Preset

Recall

x Status:

Response

(Success)

DeviceUniqueId:

Identifies the devi-

ce

The same

sequence

number as

in your

command

Here, Status is probably the most interesting field. Only status 0x0001 means that the device has

fully executed the command. 0x0009 (Error) signals an error, and 0x0041 (Wait) just means that

the device may take some time to process your request. As a PresetRecall may take some time, it

is common to receive a Wait message before the final acknowledgement.

To get you started, we end with a simple code snippet, written in python, to send a preset recall

command to a device with a known IP. Note that it does not wait for an answer or handle possible

errors – it is simply “fire-and-forget”. Also, MessageSequenceNumber and the recalled Position are

hardcoded.

import socket, struct

CMLA_IP = "192.168.1.232"

UDP_PORT = 5001

FMT_BASIC_HEADER = b"<BBHIHBB"

FMT_PRESET_RECALL = b"<6B"

bh = struct.pack(FMT_BASIC_HEADER, 0x04, 0x01, 0x02, 0x00, 0x01ee, 0xff, 0x00)

cmd = struct.pack(FMT_PRESET_RECALL, 0x02, 0x00, 0x02, 0x00, 0x00, 0x00)

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

sock.sendto(bh + cmd, (IBEAM_IP, UDP_PORT))

SEEBURG acoustic line GmbH

Auweg 32

D-089250 Senden-Freudenegg

Fon: +49 (0)7307 97 00- 0

Fax: +49 (0)7307 97 00- 29

www.seeburg.com

info@seeburg.net

API Documentation

Irrtum bei Beschreibung

sowie technische

Änderungen vorbehalten.

Alle SEEBURG acoustic line

Produkte sind nur für den

gewerblichen Einsatz bestimmt.

All specifications are

current at the time of publishing

but are subject to change.

http://www.seeburg.com/
mailto:info@seeburg.net

